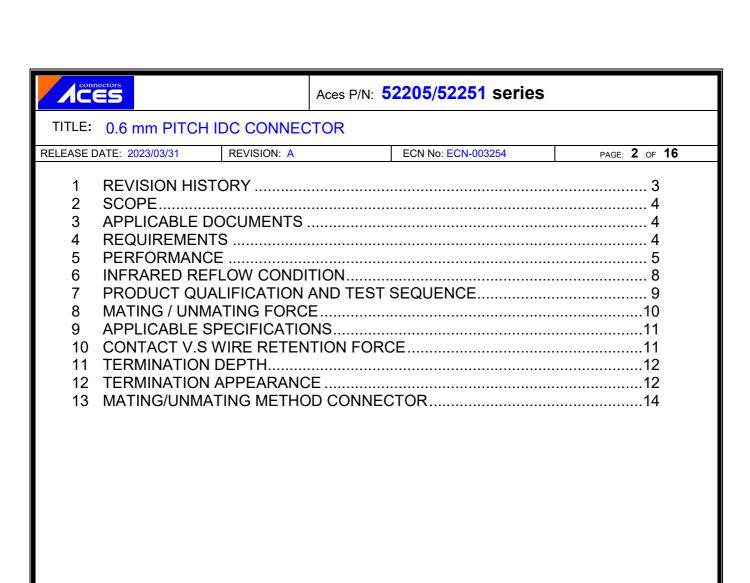


SPECIFICATION

宏致電子股份有限公司

桃園縣中壢市東園路13號


No.13, Dongyuan Rd., Jhongli City,

Taoyuan County 320, Taiwan (R.O.C.)

TEL: +886-3-463-2808 FAX: +886-3-463-1800

SPEC. NO.: PS-5	2205-XXXXX-XXX	REVISION:	Α
PRODUCT NAME	• 0.6 mm PITCH WTB I	DC CONNECTOR	
PRODUCT NO:	52205/52251 SERIES		

PREPARED:	CHECKED:	APPROVED:
Xu,Bin	Xu,Zhi Yong	Xu,Zhi Yong
DATE: 2023/03/31	DATE: 2023/03/31	DATE: 2023/03/31

REVISION HISTORY Revision Description Prepared Date	REVISION HISTORY Rev. ECN # Revision Description Prepared Date
Rev. ECN # Revision Description Prepared Date	Rev. ECN# Revision Description Prepared Date
A ECN-003254 NEW XUBIN 2023/03/31	A ECN-003254 NEW XUBIN 2023/03/31

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: 4 OF 16

2 SCOPE

This specification covers performance, tests and quality requirements for 0.6 mm pitch IDC connector.

3 APPLICABLE DOCUMENTS

EIA-364: ELECTRONICS INDUSTRIES ASSOCIATION

4 REQUIREMENTS

- 4.1 Design and Construction
 - 4.1.1 Product shall be of design, construction and physical dimensions specified on applicable product drawing.
 - 4.1.2 All materials conform to R.o.H.S. and the standard depends on TQ-WI-140101.
- 4.2 Materials and Finish
 - 4.2.1 Contact: High performance copper alloy.

Finish: (a) Contact Area: Refer to the drawing.

- (b) Under plate: Refer to the drawing.
- (c) Solder area: Refer to the drawing.
- 4.2.2 Housing: Thermoplastic or Thermoplastic High Temp., UL94V-0
- 4.2.3 Fitting Nail: Copper Alloy,

Finish: Refer to the drawing.

- 4.3 Ratings
 - 4.3.1 Working Voltage less than 36 Volts AC (per pin)
 - 4.3.2 Voltage: 50 Volts AC (per pin)
 - 4.3.3 Current: AWG #34 0.5A/1circuit
 - 4.3.4 Operating Temperature : -40°C to +85°C

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: **5** OF **16**

5 Performance

5.1. Test Requirements and Procedures Summary

Item	Requirement	Standard
Examination of Product	Product shall meet requirements of applicable product drawing and specification.	Visual, dimensional and functional per applicable quality inspection plan.
	ELECTRICAL	
Item	Requirement	Standard
Low Level Contact Resistance	30 m Ω Max.(initial)per contact 50 m Ω Max. after test.	Mate connectors, measure by dry circuit, 20mV Max., 10mA Max. (EIA-364-23)
Insulation Resistance	100 M Ω Min.	Unmated connectors, apply 100 V DC between adjacent terminals. (EIA-364-21)
Dielectric Withstanding Voltage	No discharge, flashover or breakdown. Current leakage: 1 mA max.	200V AC Min. at sea level for 1 minute. Test between adjacent contacts of unmated connectors. (EIA-364-20)
Temperature Rise	30°C Max. Change allowed	Mate connector: measure the temperature rise at rated current until temperature stable. The ambient condition is still air at 25°C (EIA-364-70,METHOD1,CONDITION 1 & 2)
	MECHANICAL	
Item	Requirement	Standard
Durability	20 cycles.	The sample should be mounted in the tester and fully mated and unmated the number of cycles specified at the rate of 25.4 ± 3mm/min.
Mating / Unmating Forces	Please see Item 2 (Without lock)	Operation Speed: 25.4 ± 3 mm/minute Measure the force required to mate/unmate connector. (EIA-364-13)
Contact Retention Force (Board Side)	0.5N Min.	Operation Speed: 25.4 ± 3 mm/minute. Measure the contact retention force with tester.
Fitting Nail /Housing Retention Force (Board Side)	0.5N MIN.	Apply axial pull out force at the speed rate of 25.4 ± 3 mm/minute. On the fitting nail assembled in the housing.

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: **6** OF **16**

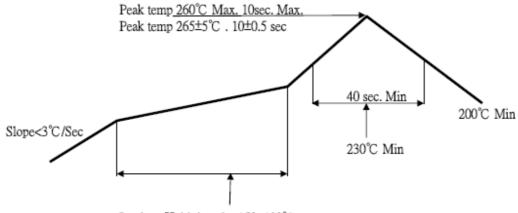
		Operation Speed :
		25.4 ± 3 mm/minute.
Wire Pull Out Force	Refer to item 8	Fix the crimped terminal, apply axial
		pull out force on the wire.
		The electrical load condition shall
		be 100 mA maximum for all
		contacts. Subject to a simple
		harmonic motion having amplitude
		of 0.76mm (1.52mm maximum
		total excursion) in frequency
		between the limits of 10 and 55 Hz.
Vibration	1 μs Max.	The entire frequency range, from
		10 to 55 Hz and return to 10 Hz,
		shall be traversed in approximately
		1 minute. This motion shall be
		applied for 2 hours in each of three
		mutually perpendicular directions.
		(EIA-364-28 Condition I)
		Subject mated connectors to
		50 G's (peak value) half-sine shock
		pulses of 11 milliseconds duration.
		Three shocks in each direction
		shall be applied along the three
Shock (Mechanical)	1 µs Max.	
Snock (iviechanicai)	T μs Max.	
Snock (wechanical)	T μs max.	mutually perpendicular axes of the
Snock (Mechanical)	η μѕ мах.	mutually perpendicular axes of the test specimen (18 shocks). The
Snock (Mechanical)	т μѕ мах.	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be
Snock (Mechanical)	т μѕ мах.	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts.
Snock (Mechanical)	,	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A)
Snock (Mechanical)	ENVIRONMENTA Requirement	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A)
	ENVIRONMENTA	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) Standard
	ENVIRONMENTA	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C,
ltem	ENVIRONMENTA	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec.
Item Resistance to Reflow	ENVIRONMENTA Requirement	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min.
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max,
Item Resistance to Reflow	ENVIRONMENTA Requirement	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max.
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max.
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56)
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free)	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles.
Item Resistance to Reflow Soldering Heat	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free) See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles:
Item Resistance to Reflow Soldering Heat (Board Side)	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free)	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles: -55 +0/-3°C, 30 minutes
Item Resistance to Reflow Soldering Heat (Board Side)	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free) See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles: -55 +0/-3°C, 30 minutes +85 +3/-0°C, 30 minutes
Item Resistance to Reflow Soldering Heat (Board Side)	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free) See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles: -55 +0/-3°C, 30 minutes
Item Resistance to Reflow Soldering Heat (Board Side)	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free) See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles: -55 +0/-3°C, 30 minutes +85 +3/-0°C, 30 minutes (EIA-364-32, test condition I) Mated Connector
Item Resistance to Reflow Soldering Heat (Board Side) Thermal Shock	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free) See Product Qualification and Test Sequence Group 4	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles: -55 +0/-3°C, 30 minutes +85 +3/-0°C, 30 minutes (EIA-364-32, test condition I) Mated Connector 40°C, 90~95% RH,
Item Resistance to Reflow Soldering Heat (Board Side)	ENVIRONMENTA Requirement See Product Qualification and Test Sequence Group 10 (Lead Free) See Product Qualification and Test	mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) L Standard Pre Heat: 150°C~180°C, 60~120sec. Heat: 230°C Min., 40sec Min. Peak Temp.: 260°C Max, 10sec Max. Reflow number cycle: 2 times (EIA-364-56) Mate module and subject to follow condition for 5 cycles. 1 cycles: -55 +0/-3°C, 30 minutes +85 +3/-0°C, 30 minutes (EIA-364-32, test condition I) Mated Connector

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: **7** OF **16**

	<u> </u>	
Temperature Life	See Product Qualification and Test Sequence Group 5	Subject mated connectors to temperature life at 85°C for 96 hours. (EIA-364-17, Test condition A)
Salt Spray (Only For Gold Plating)	See Product Qualification and Test	Subject mated/unmated connectors to 5% salt-solution concentration, 35°C (I) Gold flash for 8 hours (II) Gold plating 3 u" for 48 hours. (III) Gold plating 5 u" for 96 hours. (EIA-364-26)
Solder ability (Board Side)	Tin plating: Solder able area shall have minimum of 95% solder coverage. Gold plating: Solder able area shall have minimum of 75% solder coverage	And then into solder bath, Temperature at 245 ±5°C, for 4-5 sec. (EIA-364-52)
Hand Soldering Temperature Resistance (Board Side)	Appearance: No damage	T≧350°C, 3sec at least.

Note. Flowing Mixed Gas shell be conduct by customer request.


REVISION: A

6 INFRARED REFLOW CONDITION

RELEASE DATE: 2023/03/31

Temperature condition graph (Temperature on board pattern side)

ECN No: ECN-003254

PAGE: 8 OF 16

connectors

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: **9** OF **16**

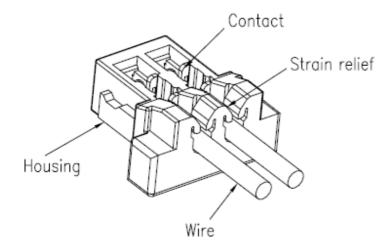
7 PRODUCT QUALIFICATION AND TEST SEQUENCE

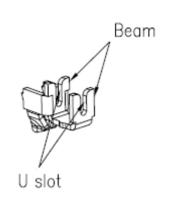
					Те	st Gro	up				
Test or Examination	1	2	3	4	5	6	7	8	9	10	11
					Test	Sequ	ence				
Examination of Product				1 . 7	1 \ 6	1 \ 4				1	1
Low Level Contact Resistance		1 \ 5	1 \ 4	2、10	2 \ 9	2 \ 5				3	
Insulation Resistance				3、9	3 . 8						
Dielectric Withstanding Voltage				4 \ 8	4 \ 7						
Temperature Rise	1										
Mating / Unmating Force		2 · 4									
Durability		3									
Vibration			2								
Shock (Mechanical)			3								
Thermal Shock				5							
Humidity				6							
Temperature Life					5						
Salt Spray(Only For Gold Plating)						3					
Solder ability							1				
Wire Pull Out Force								1			
Contact Retention Force (Board Side)									1		
Fitting Nail /Housing Retention Force									2		
(Board Side) Resistance to Soldering Heat										2	
(Board Side) Hand Soldering Temperature	 									-	
Resistance (Board Side)											2
Sample Size	2	4	4	4	4	4	2	4	4	4	4

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: **10** OF **16**

8 MATING / UNMATING FORCE

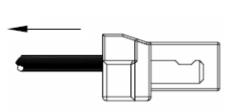

	Ini	After 20th Cycle	
NO. OF Ckt.	Insertion Force (Max.)	Withdrawal Force (Min.)	Withdrawal Force (Min)
20	20 N	5 N	3N

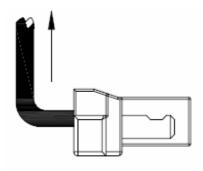


TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: 11 OF 16

9 APPLICABLE SPECIFICATIONS



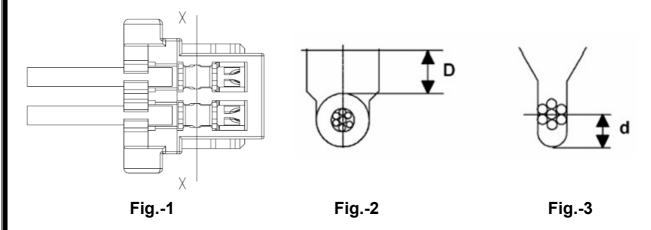

10 CONTACT V.S WIRE RETENTION FORCE

Wir	e Size	UL style (REF.)	Material of insulation	Insulation OD	Parallel	Perpendicular
AW	/G#34	UL10064	Teflon/PTFE	Ф0.32±0.02mm	3N Min.	1N Min.

Note: It is necessary to use the UV glue for the application of the wire retention force increasing.

Parallel direction

Perpendicular direction


Page 11

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: 12 OF 16

11 TERMINATION DEPTH

Measure termination depth dimension "D" in Fig.-2 at X-X part in Fig.-1 where is in then middle part of two U slots and a flattened part pressed by termination punch, and check it satisfies specified value in table

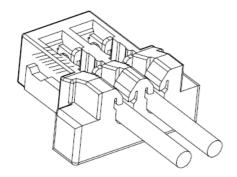
Exact termination depth is measure "d" between bottom of slot and position of center core wire of wire conductors as shown in Fig.-3; Aces specifies termination depth dimension "D" force to facilitate a time-consuming work of measuring "d" as a daily control.

Accordingly, dimension "D" becomes not reference value but control value for the use of the wire to be checked is Aces expect specified wires.

,	Wire Size	UL style (REF.)	Insulation OD	Termination Depth D	d
	AWG#34	UL10064	Ф0.32±0.02mm	D=0.28±0.05mm	d=0.16±0.05mm

12 TERMINATION APPEARANCE

Inspect the following points after termination.


- 12.1 Punching flaws on housing caused by termination punch; Housing must be free from flaws. When connector set position deviation, scratches and deformation caused by termination punch may appear at the diagonally shaded areas in Fig.-4.
- 12.2 Flaws and deformation at beams of contact. Beams must be free from flaws and dimension. When connector set position deviation to wire axis direction, scratches and deformation caused by termination punch may appear at beams of contact as shown in Fig.-5.

In this case, not only contact but also termination die may be damaged.

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: 13 OF 16

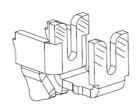


Fig.-4 Fig.-5

12.3 Exposure of wire conductors around beams of contact; Wire conductors must not be exposed. When connector set position deviates to wire axis direction, wire conductors may expose in front or back of beams of contact as shown in Fig.-6.

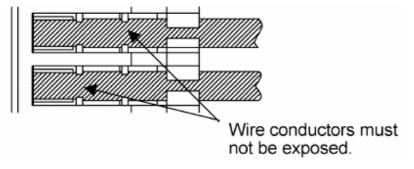


Fig.-6

12.4 Gap between housing wall and wire tip (Wire protruding length) Gap "G" between housing walls and wires tip in Fig.-7 should be 0.2 mm max.

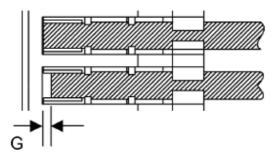


Fig.-7

12.5 Overrun of wire (Wire must not overrun) when wire tension is not adequate, overrun of wire may appear as shown in Fig.-8.

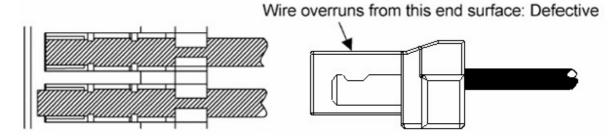
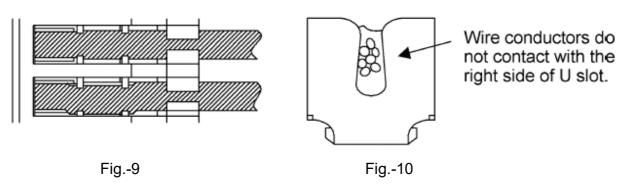



Fig.-8

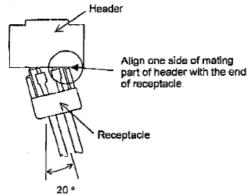
12.6 Deviation of insulation displacement center (Deviation of insulation displacement center must not happen. When connector set position or wire deviates to pitch direction, termination punch, wire and U slots do not align so that insulation displacement center deviate as shown in Fig.-9 and Fig.-10

13 MATING/UNMATING METHOD CONNECTOR

13.1 Mating method of connector

Mated receptacle with header straight on same axis. When the position of mating part of header and receptacle is aligned, align one side of mating part of header with the end of receptacle within 20 degrees to mating axis as shown in Fig.-11.

Do not mate receptacle at the angle of 20 degrees or more, because such handling may cause breakage of connector, etc.


When position of receptacle and header is aligned, hold wires in a bundle in order to prevent applying external force to receptacle. Then, mate receptacle with header up to the back straight against mating axis.

Besides, after mating operation, check that there is no clearance between header and receptacle as shown in Fig.-12, because such clearance may lead discontinuity of connector.

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: 15 OF 16

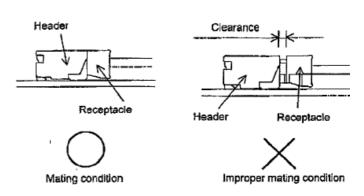


Fig.-12
Mating condition (Side entry type)

13.2 Unmating method of connector

Hold wires in a bundle and unmate receptacle from header on the same axis. At this time, conduct operation within 20 degrees to mating axis.

Do not unmate receptacle forcibly with prying more than 20 degrees, because such handing may cause breakage of connector, etc.

If receptacle is unmated with holding wire of only one end, such handling is the same as prying connector.

Beside, there is a possibility that wire may come off housing when they are unmated without holding in a bundle.

Even when all wires cannot be held in routing of wires, wire more than the number shown in the Table-1 should be held and unmated.

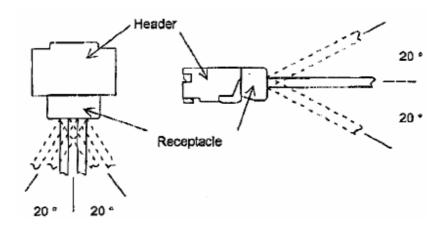


Fig.-13

TITLE: 0.6 mm PITCH IDC CONNECTOR

RELEASE DATE: 2023/03/31 REVISION: A ECN No: ECN-003254 PAGE: 16 OF 16

CKTS	Wires
2	hold 2 wires without fail
3~5	hold more than 3 wires
6~10	hold more than 4 wires
11~15	hold more than 5wires
16~20	hold more than 6 wires

Table -1

13.3 Routing of wire

In routing wire, careful operation is required so that tension more than 1N may not be applied per connector and one wire (one circuit).